
What’s New in the Linux Network Stack?

Lukas M. Märdian
Advisors: Paul Emmerich, Daniel Raumer

Seminar Future Internet, Winter Term 14/15
Chair for Network Architectures and Services

Department for Computer Science, Technische Universität München
Email: maerdian@in.tum.de

ABSTRACT
In this paper, interesting features of the Linux kernel’s net-
work stack are analyzed, which were introduced during the
development cycles from Linux v3.7 to Linux v3.16. Special
attention is given to the low-latency device polling, intro-
duced in Linux v3.11, the netfilter’s SYNPROXY target,
introduced in Linux v3.12 and the new Nftables framework,
introduced in Linux v3.13. At the end a trend is presented,
which shows the direction in which the Linux network stack
is evolving.

Keywords
Linux, network, packet processing, SYN proxy, JIT com-
piler, firewall, low-latency, Berkeley Packet Filter

1. INTRODUCTION
The Linux kernel is a fast moving and always changing piece
of free software. Having a very mature network stack, Linux
is deployed widely, especially to drive and manage the ever
growing and changing world wide web. It is sometimes hard
to follow the newest developments and discussions regarding
the Linux kernel, so this paper gives an analysis of the cur-
rent state of the Linux kernel’s network stack and presents
some interesting features, which were introduced in the de-
velopment cycles from Linux v3.7 to v3.16.

Chapter 2 describes the low-latency device polling feature,
which was introduced in Linux v3.11. Chapter 3 gives an
overview of the addition of a SYN proxy to the Netfilter
subsystem, introduced in Linux v3.12. The new packed fil-
tering framework Nftables, successively replacing Iptables,
is introduced in Chapter 4. In Chapter 5 the trend of the
Linux kernel’s network evolution is discussed and finally a
conclusion is presented in Chapter 6.

2. LOW-LATENCY DEVICE POLLING
In the Linux kernel v3.11 Eliezer Tamir et al. introduced
a low-latency polling mechanism for network devices. The
classical way how the Linux kernel handles its network de-
vices, by using the New API (NAPI), provides a good trade
off between efficiency and latency of the packet processing.
Still, some users with more specific demands, such as the
finance sector with their high-frequency trading systems or
scientific research with high-performance computing, need
to reach the lowest latency possible, even on high traffic
network devices. This demands are not possible to reach
with NAPI. [3]

2.1 Interrupts vs. Polling
Usually, the Linux kernel handles network devices by using
the so called New API (NAPI), which uses interrupt mitiga-
tion techniques, in order to reduce the overhead of context
switches: On low traffic network devices everything works
as expected, the CPU is interrupted whenever a new packet
arrives at the network interface. This gives a low latency in
the processing of arriving packets, but also introduces some
overhead, because the CPU has to switch its context to pro-
cess the interrupt handler. Therefore, if a certain amount
of packets per second arrives at a specific network device,
the NAPI switches to polling mode for that high traffic de-
vice. In polling mode the interrupts are disabled and the
network stack polls the device in regular intervals. It can
be expected that new packets arrive between two polls on a
high traffic network interface. Thus, polling for new data is
more efficient than having the CPU interrupted and switch-
ing its context on every arriving packet. Polling a network
device does not provide the lowest packet processing latency,
though, but is throughput optimized and runs with a fore-
seeable and uniform work load. [1]

2.2 Low-latency Polling
In order to make network packets reach the network stack
and user space as fast as possible, the low-latency device
polling mechanism was introduced, so users of the network
stack (applications) can poll for new packets, whenever they
are ready to process new data. Even though polling is
involved, this technique provides a lower latency than re-
enabling the per-packet interrupts, because on a high traffic
network device, there would be hundreds or thousands of
packet-interrupts per second. Handling all of them would
introduce a larger latency than polling within very small
intervals. [2, 3]

Technically, this is realized by a new function call, named
ndo_busy_poll(), defined in include/linux/netdevice.h,
which can be implemented by network device drivers [4]. In
this function call the device drivers are supposed to poll the
network hardware for new packets and return them immedi-
ately. If no packets are available at the moment, the drivers
are supposed to busy wait for new arriving packets until a
timeout is reached, as defined (in µs) by sysctl.net.core.

busy_read and sysctl.net.core.busy_poll. The default
timeout value is set to 0, which means busy waiting is dis-
abled and the driver should poll only once. For latency crit-
ical applications a polling timeout of 50µs is recommended.
[2, 3, 7]

On devices, whose drivers implement this low-latency polling
function call, e.g. Intel’s ixgbe driver [5], the network stack
will poll the hardware for new network data at certain sit-
uations, e.g. when it is instructed to do so by a user space
application via the poll() system call. This way the user
space can ask for new network packets, whenever it is ready
to process new data. The driver will then either directly
flush the new network packets, which arrived since the last
poll, or (if no packet arrived) it will poll the network device
in a busy waiting loop and flush new data, arriving before
the timeout. Another situation where the network stack will
issue the low-latency polling function call is in the read()

system call: When a user space application tries to read new
data from a socket but there are no packets in the queue, the
network device will be polled in a busy waiting loop until
the timeout is reached. On high traffic devices, the driver
will most likely be able to return new data to the user space
as a response to its read() call. [2, 3]

With this low-latency polling mechanism, an latency im-
provement of about 30% is possible (2.5µs within an UDP
connection and 2.2µs within a TCP connection), introducing
just a minimally increased CPU load on a typical system,
using two Intel Xeon E5-2690 CPUs, X520 optical NICs and
the Netperf benchmark (c.f. Figure 1). [7]

Figure 1: Netperf Latency results [7]

3. NETFILTER: SYNPROXY TARGET
Introduced in the Linux kernel v3.12 by Patrick McHardy
et al. was a SYNPROXY target for the kernel’s internal
packet filtering framework, called Netfilter. This implements
the concept of a stateful firewall, where connection attempts
are filtered very early in the network stack, before they reach
their destination. So they can be handled before they are
tracked by a data structure, called transmission control block
(TCB), in the filtering subsystem (conntrack).

3.1 SYN-Flooding Attacks
In order to establish a TCP connection between a server
and a client, a three way handshake is used: The client
sends a SYN packet to the server to request a connection,
then the server responds with a SYN/ACK packet to con-
firm the client’s request. If everything is fine, the client
answers with an ACK packet and the connection is estab-
lished. This TCP three way handshake can be attacked
by a SYN flooding attack, which is a commonly used Dis-
tributed Denial-of-Service (DDoS) attack. In this attack,
the attacker sends many SYN requests with spoofed IPs to
the server, using a botnet. For each of those faked requests
the server needs to initialize a TCB data structure, respond
with a SYN/ACK packet and wait for an ACK from the
client. In case of a DDoS attack the ACKs will never arrive,
as the senders IP addresses are not real. Still, the server
needs to store the TCBs for a certain amount of time, which
will fill up its TCB buffer and leads to a situation where
real (i.e. non-attack) requests cannot be handled anymore
and thus the server is rendered unreachable. [8, 9] Reducing
the timeout of the transmission control blocks, which is 5
seconds in the default case (initial retransmission timeout
(1 sec) * tcp_synack_retries (5), c.f. man tcp(7), [10]),
or increasing the TCB buffer will help to handle such situ-
ations. Depending on the attacker’s botnet size, the server
will be out of service anyway, though. In order to defend
such DDoS attacks, countermeasures, such as SYN cookies
and SYN proxies have been invented, which are presented
in the following.

3.2 SYN-Cookies
One countermeasure to defend a SYN flooding attack is the
use of so called SYN cookies. The modern type of SYN cook-
ies was introduced in 1996 by D. J. Bernstein et al. [11]. The
idea is to compute the cryptographic hash of the character-
istic data of the connection, like the sender’s and receiver’s
IP addresses and the ports used. This data is joined with a
secret key, which is only known to the server, using a hash-
ing algorithm, such as MD5 or SHA. The resulting hash is
called SYN cookie and is set to be the sequence number
(SQN) of the SYN/ACK TCP packet. If the SYN/ACK
reaches a real client, which responds with a real ACK mes-
sage, the cookie can be reconstructed from that message’s
SQN field. Thus the server does not need to store a TCB
for each SYN request, but instead just needs to check the
cookie of arriving ACK packets. If the SYN cookie con-
tained in the SQN field of the arrived message is the same
as the hash, which the server can reconstruct from the secret
key and the connection’s characteristics, the server can be
sure that he send a SYN/ACK message to that client before.
Using this method, SYN flooding can be circumvented, as
there is no TCB queue, which could be flooded. There are
some drawbacks in using SYN cookies, though. For example
the server needs to have enough computing power to com-
pute SYN cookies for all arriving SYN packets in real time
and the firewall needs to know the server’s TCP options, to
determine the connection characteristics. [9]

3.3 SYN-Proxies
A SYN proxy is an entity in the same network as the server,
which ought to be protected. Its purpose is to filter and/or
load balance incoming SYN requests, using different meth-
ods and technologies (e.g. SYN cookies). A common method

Figure 2: SYN-ACK spoofing Proxy [14]

of such a stateful firewall is the spoofing of SYN/ACK pack-
ets to the client (cf. Figure 2), in order to avoid invalid
connection attempts to reach the real server and open a
connection, including a TCB. [14, 12]

In Linux v3.12 and beyond the new SYNPROXY target can
be setup as shown in the following:

1. Don’t track incoming SYN requests:
iptables -t raw -I PREROUTING -i $DEV -p tcp \

-m tcp --syn --dport $PORT -j CT --notrack

2. Mark unknown ACK packets as invalid:
/sbin/sysctl -w \

net/netfilter/nf_conntrack_tcp_loose=0

3. Handle untracked (SYN) and invalid (ACK) packets,
using the SYN proxy:
iptables -A INPUT -i $DEV -p tcp -m tcp \

--dport $PORT -m state --state \

INVALID,UNTRACKED -j SYNPROXY --sack-perm \

--timestamp --wscale 7 --mss 1460

4. Drop the remaining invalid (SYN/ACK) packets:
iptables -A INPUT -i $DEV -p tcp -m tcp \

--dport $PORT -m state --state INVALID -j DROP

5. Enable TCP timestamps, needed for SYN cookies:
/sbin/sysctl -w net/ipv4/tcp_timestamps=1

Using this setup and a little bit of conntrack tuning, it was
shown, that the performance of a server during a SYN flood-
ing attack can be increased by the order of one magnitude,
using this Netfilter SYNPROXY target [12]. This is a nice
improvement, but of course using this stateful firewall comes
at a cost: Due to the extra layer, which the SYN proxy intro-
duces, the connection establishment phase will take longer,
leading to an increased latency. Also TCP connection pa-
rameters and characteristics, used by the SYN proxy, must
match the servers TCP settings. These settings have to be
set in the SYNPROXY module manually, leading to a con-
figuration overhead and a new source of errors. To fix the
configuration problem, the authors have already proposed
a solution where the connection characteristics can be de-
tected automatically, by forwarding the first connection re-
quest for normal processing to the server and sniffing the
settings from its response [13].

4. NFTABLES
Nftables is a dynamic firewall system, which is based upon
a bytecode interpreter. The project was initially started in
2009 by Patrick McHardy but discontinued, due to a lack
of interest. In October 2012 the Netfilter maintainer Pablo
Neira Ayuso announced to revitalize Nftables, based upon
McHardy’s work. With his additional ideas he could attract
more developers and together they were able to integrate
Nftables as a new feature in Linux v3.13. [15]

4.1 Iptables, Ip6tables, Arptables, Ebtables
Prior to the general purpose firewall system Nftables several
other, protocol specific solutions existed in the Linux ker-
nel, namely Iptables to filter IPv4 connections, Ip6tables to
filter IPv6 connections, Arptables to filter ARP connections
and Ebtables to filter ethernet bridging connections. Those
static solutions had some drawbacks, such as tightly coupled
data structures, which got passed back and forth between
the kernel and user space. This made the kernel’s imple-
mentation of those filters quite inflexible and optimizations
to the structures very hard to implement. Furthermore, the
ruleset for the filters was represented as one big chunk of
binary data, which made it impossible to incrementally add

new rules to the firewall system. The solution to this prob-
lem was, that the firewall management tools dumped the
firewall’s current state to a file, modified the whole chunk of
data (added, removed, altered rules) and injected the file as
a whole back into the firewall system. This approach works
but is problematic, because it has a quadratic complexity for
incremental changes. Also, by injecting the new rule set, the
firewall will loose its current state, which makes it unable to
continue tracking the currently open connections, so it has
to start over. [17]

4.2 Virtual Machine
The concept behind the dynamic Nftables system, which
helps to overcome the above mentioned problems of static
and protocol specific firewall systems, are based upon a vir-
tual machine. All the static filtering modules, used by Ipt-
ables and the other protocol filters, are replaced by a single
kernel module, providing ”a simple virtual machine [...] that
is able to execute bytecode to inspect a network packet and
make decisions on how that packet should be handled” [15].
The idea of this approach is inspired by the Berkeley Packet
Filter (BPF) virtual machine. The virtual machine on its
own is not able to do any packet filtering, instead it is de-
pendent on small bytecode programs, which describe how a
specific package should be handled. Those small, individual
programs get compiled by Nftables’ corresponding manage-
ment tools in the user space, e.g. the command-line utility
nft, and can incrementally be put into the interpreter at
runtime. [16]

One of the biggest benefits of this virtual machine approach
is a massive reduction in complexity. By replacing four fil-
tering systems for different protocols with a single, universal
system, a lot of code can be removed. This leads to less
problems, because duplicated code is removed and the re-
maining common is reviewed by more people. By moving
the filtering logic out of the Linux kernel into the firewall
management tools, while just keeping a small virtual ma-
chine to execute the bytecode, provided by the management
tools, the complexity of the filtering logic is reduced as well.

In order to stay compatible with the old firewall manage-
ment tools, such as iptables and ip6tables, Nftables pro-
vides a compatibility layer, which is integrated in the Ipta-
bles project and enables long time users of Iptables to easily
migrate their old firewall rules (using old syntax). Internally
the new bytecode for the Netfilter virtual machine will be
compiled. However, new users are encouraged to use the
new nft command-line utility to manage their firewall in
Linux kernels of version v3.13 or beyond. [16, 15]

4.3 New possibilities of Bytecode filtering
In contrast to the old firewall system, the new dynamic
system, using its small bytecode programs, is much more
flexible and provides quite some improvements: Each rule
change, which is represented as a small bytecode program,
can be performed atomically during the runtime of the sys-
tem and without interfering with the general state of the
firewall. Also, open connections can be kept open, if not
requested differently be the new rules. This atomic replace-
ment of rules does speed up changes in firewalls with big rule
sets quite a bit, as it is not needed anymore to dump, modify
and replay the whole state of the system, but instead just

the single, wanted modification can be executed. In addition
to the speedup it also helps to avoid race conditions, which
could occur during the rule set change in the old system.
[15]

Another benefit is, that new matching types (i.e. character-
istics of a packet to filter for) can be added easily to a byte-
code program. Whereas the old system used to depend on
an extra kernel module for each matching rule, which could
be set by the management tools. This led to a large amount
of over 100 modules. Getting new matches/modules into
the kernel took much longer than writing a simple program,
which can be injected into the firewall at runtime. Further-
more, handling all the matching in small programs, compiled
by user space tools, makes it possible to have the rule set
optimized. Using generic compiler optimizations, faster exe-
cution in the in-kernel virtual machine can be achieved, e.g.
by automatically removing duplicated or unreachable rules,
which the firewall administrator did not think of. [17]

Using the libnftnl library, provided by the Nftables project,
it is easily possible to write new and improved firewall man-
agement tools, too. This library enables those user space
tools also to listen to changes in the firewall system and no-
tify the applications in real time about the current state.
[17] One tool leveraging this library is nft, the main firewall
management tool, provided by the Nftables project. It has
a similar functionality as the old iptables tool but tries to
be more intuitive, by using natural language to describe the
different filters instead of lots of configuration switches. For
example if somebody wants to drop all IPv4 HTTP traffic,
this can be established as follows: [18]

1. Setup an iptables like chain, using the ipv4-filter file,
provided by Nftables:
nft -f files/nftables/ipv4-filter

2. Drop all incoming TCP packets with the destination
of port 80 (HTTP):
nft add rule ip filter input tcp dport 80 drop

5. LINUX NETWORKING TREND
In this final chapter, a general trend is shown, which can
be observed in the development of the Linux kernel’s net-
work stack: It can be seen that the kernel developers in-
troduce more and more dynamic features such as virtual
machines, bytecode interpreters and JIT-compilers into the
kernel, which help to abstract certain features and move the
complexity into the userspace.

5.1 Berkeley Packet Filter VM
The Berkeley Packet Filter (BPF) has for very long been
part of the Linux kernel. It is a tool, which can filter net-
work packets on a low level, in order to function as a per-
application firewall, forward only relevant packets to the
user space and allow the tracing of network traffic, using
tools such as tcpdump [19]. Simple examples of the filter’s
internal workings can be found in the original paper by Mc-
Canne et al. 1993, e.g. a small BPF program, which loads a
packet’s Ethernet protocol type field at offset 12 and accepts
the packet if it is of type IP or rejects it otherwise:

Listing 1: BPF program: IP filter [23]
ldh [12]
jeq #ETHERTYPE_IP , L1, L2

L1: ret #TRUE
L2: ret #0

Since the release of Linux kernel v3.0, the BPF has been
improved continuously. It started with the introduction of a
just-in-time (JIT) compiler for the filter, by Eric Dumazet,
which enabled the Linux kernel to translate the virtual ma-
chine instructions to assembly code on the x86 64 architec-
ture in real time and continued with other performance im-
provements and functional extensions in Linux kernel v3.15
and v3.16. [19, 20]

In recent Linux kernel versions (v3.15, v3.16), the BPF vir-
tual machine has been extended from having a very simple
and network specific architecture with just a few registers
and capabilities, to being more of a general purpose filtering
system, whose capabilities can be mapped pretty close to
modern hardware. The instructions of this virtual machine,
as can be seen in Listing 1, are usually mapped 1:1 to real
assembly instructions of the underlying hardware architec-
ture. [19, 21]

5.2 Dynamic Firewall Systems
The concept of dynamic filtering systems on different lev-
els of abstraction is another development trend in the Linux
kernel. As discussed before, there is Nftables, which has
its filtering rules created and optimized dynamically at user
space level, using tool such as nft. These rules, which im-
plement the filters, can then be fed into the firewall system
dynamically at runtime and are being processed by a virtual
machine in the kernel, in a dynamic manner (c.f. Chapter
4).

In addition to the general purpose firewall Nftables, which
aims to protect a Linux system from the outside world and
regulate the incoming and outgoing network traffic, there is
the Berkeley Packet Filter (BPF), too. It can function as a
per-application firewall and can be used for system internal
packet processing, e.g. to reduce the network traffic, which is
directed to a specific application. The BPF is implemented
as a dynamic bytecode interpreter, too. (cf. chapter 5.1)

This evolution from static tools, such as iptables or the
early, static variant of the Berkeley Packet Filter, to more
dynamic and abstract tools, is characteristic for the direction
of development in the current versions of the Linux kernel.
A remaining question is, why those quite similar tools are
still separated and not merged into one universal solution
for dynamic packet filtering. This is because the tools come
from different backgrounds and as of today none of them is
yet fully able to replace all the others. McHardy explained,
why they did not build Nftables upon an existing solution,
such as the BPF virtual machine: ”A very important feature,
one that is missing from all other filters that are built similar
in the kernel (like BPF, TC u32 filter, ...), is reconstruction
of high level constructs from the representation within the
kernel. TC u32 for example allows you to specify ’ip daddr
X’, but when dumping the filter rules it will just display an
offset and length.” [22]

As the abstraction level continues to rise, and the firewall
systems are not just used for packet filtering any more, but
also for general Linux kernel tracing, it is plausible that the
different virtual machines in the Linux kernel are combined
into a single, general purpose interpreter in the future.

5.3 Future possibilities
Watching the current trend of developments in the Linux
kernel, a little outlook how the kernel’s network stack might
evolve in the future is presented now: The inclusion of dy-
namic bytecode interpreters into the Linux kernel is a pop-
ular way to increase the level of abstraction in kernel devel-
opment and also to reduce the complexity. Right now, there
are several separate virtual machines in the kernel, which is
not an optimal solution, because some common code needs
to be implemented in the same (or minimally different) ways
in all of the implementations. That is also why the kernel
developers rejected the inclusion of yet another virtual ma-
chine named Ktap (used for kernel tracing) in favor of the
BPF’s tracing capabilities. [24]

In general, the BPF is a very well known virtual machine, as
it is in the kernel for a very long time already and got con-
siderable performance and functional improvements in the
recent Linux kernel releases. With its split into the clas-
sic BPF variant, providing a legacy interface to the classic
BPF network filtering functionality, and the new internal
BPF variant, which is a generalized virtual machine, in-
cluding a JIT compiler. This JIT compiler has seen various
performance improvements, by optimizing its commands to
use architecture specific assembly code. In the future such
optimizations are likely to be continued, especially for newer
architectures, such as ARM64. [21]

With the Berkeley Packet Filter’s architecture, it is already
possible to use it for network packet filtering and also for
more general tasks, such as syscall tracing, as used by the
Linux kernel’s secure computing (seccomp) system, similar
to what Ktap wanted to achieve [21]. Some functionality is
still missing in the BPF, though. For example Ktap wanted
to enable the possibility to use filters, supplied by user space
applications and so does Nftables with its rule sets, gener-
ated in user space, too. Another thing, which needs to be
implemented in the BPF, is the possibility to reconstruct
high level data structures, i.e. reverse the optimizations,
which have been done by the JIT compiler, as this is one of
the reasons why Nftables was not build upon the BPF (c.f.
Chapter 5.2).

If those and potentially some other drawbacks would be im-
proved, the Berkeley Packet Filter could become the single,
general purpose and highly optimized virtual machine in the
Linux kernel and all the other tracking, tracing and filtering
systems could build upon it. This would be a large ben-
efit to Linux developers and users, as the sharing of code
leads to less potential problems and a single spot to apply
optimizations in, which will in turn benefit all systems.

6. CONCLUSION
In conclusion, the developments in the Linux kernel’s net-
work stack keep pace with the fast and always changing
Internet. This global network has very versatile demands,

which the Linux kernel tries to adopt to, be it from a secu-
rity, performance or complexity perspective.

With the addition of a low-latency device polling mechanism
in Linux v3.11, the kernel can now easier be used in scenarios
where very low network latencies are critical, such as high
performance computing or high frequency trading. Before
the inclusion of this feature, the companies who needed low
latencies usually implemented their own low-latency network
stack in the user space, in order to bypass the kernel. With
the low-latency device polling in place, those companies can
now work together with the Linux community, to contin-
uously improve the low-latency network stack in a single
place, saving a lot of development resources. Benchmarks
by Intel [7] show an improvement in latency of about 30%
for the TCP and UDP protocols and a use case where lots of
small network packets with low-latency demands are send.

In terms of security, the Linux kernel was improved by the
introduction of stateful and dynamic firewall additions. The
SYN proxy, introduced in Linux v3.12, adds an extra stage
to the firewall, where new network connection attempts are
tracked, using SYN cookies. Only if the connection was
successful, they get forwarded to the rest of the network
stack, which reduces the overhead in case of a SYN flooding
DDoS attack and enables a server to handle ten times more
packets, with just a small increase in packet latency [12].
The Nftables dynamic firewall system on the other hand,
introduced in the Linux kernel v3.13, improves the kernel’s
network stack with the new possibilities of bytecode filtering,
where the filters are not statically coded into kernel modules,
but rather the rules are compiled and optimized to small
bytecode programs in user space. Those small programs are
then executed in an in-kernel virtual machine at runtime.
This way the management of the firewall system is much
more flexible and can dynamically adopt to the changing
demands of the Internet.

All in all the developments evolve into a direction, where
more systems can be controlled from outside the kernel, by
user space applications. Also, the controlling can be done in
a dynamic manner, be it by the activation of a low-latency
path for network packets, the redirection of network traffic to
a SYN proxy or the execution of bytecode programs. In the
future, the different packet processing systems in the Linux
kernel might be merged into a single, abstract system, which
is able to handle lots of tasks by executing code, provided by
the user space in a dynamic manner. Such a system would
not only be able to handle network related tasks, but could
also deal with other tracking, tracing and filtering tasks.

7. REFERENCES
[1] J. Hadi Salim, R. Olsson, A. Kuznetsov: Beyond

Softnet, In Proceedings of the 5th Annual Linux
Showcase & Conference, pages 165-172, 2001

[2] J. Corbet: Low-latency Ethernet device polling, In
Linux Weekly News, Eklektix Inc., May 2013,
https://lwn.net/Articles/551284/

[3] J. Brandeburg: A way towards Lower Latency and
Jitter, At Linux Plumbers Conference, August 2012

[4] E. Tamir: net: add low latency socket poll, June 2013,
http://git.kernel.org/cgit/linux/kernel/git/

torvalds/linux.git/commit/?id=060212928670593

[5] E. Tamir: ixgbe: add support for ndo ll poll, June
2013, http://git.kernel.org/cgit/linux/kernel/
git/torvalds/linux.git/commit/?id=5a85e737f30c

[6] E. Tamir: net: low latency Ethernet device polling,
May 2013, https://lkml.org/lkml/2013/5/19/20

[7] J. Cummings, E. Tamir: Open Source Kernel
Enhancements for Low Latency Sockets using Busy
Poll, October 2013

[8] W. M. Eddy: RFC-4987: TCP SYN Flooding Attacks
and Common Mitigations, August 2007,
http://www.ietf.org/rfc/rfc4987.txt

[9] J. Bongertz: Tatort Internet: Nach uns die SYN-Flut,
In c’t 15/2011, 2011, http://heise.de/-1285780

[10] Paxson, et al.: RFC-6298: Computing TCP’s
Retransmission Timer, June 2011,
http://tools.ietf.org/html/rfc6298

[11] D. J. Bernstein, E. Schenk: SYN cookies,
http://cr.yp.to/syncookies.html

[12] J. D. Brouer: DDoS protection, Using
Netfilter/iptables, At DevConf.cz, February 2014

[13] J. D. Brouer: RFE: Synproxy: auto detect TCP
options, January 2014,
https://bugzilla.redhat.com/1059679

[14] W. M. Eddy: Defenses Against TCP SYN Flooding
Attacks, In The Internet Protocol Journal - Volume 9,
Number 4, Cisco Press, December 2006

[15] J. Corbet: The return of nftables, In Linux Weekly
News, Eklektix Inc., August 2013,
https://lwn.net/Articles/564095/

[16] E. Leblond: Nftables, what motivations and what
solutions, At Kernel Recipes, September 2013

[17] P. McHardy: nftables - a successor to iptables,
ip6tables, ebtables and arptables, At Netfilter
Workshop (NFWS), 2008

[18] E. Leblond: Nftables quick howto, February 2014,
https://home.regit.org/netfilter-en/

nftables-quick-howto/

[19] J. Corbet: A JIT for packet filters, In Linux Weekly
News, Eklektix Inc., April 2011,
https://lwn.net/Articles/437981/

[20] T. Leemhuis: Kernel-Log – Was 3.0 bringt (1):
Netzwerk, In Heise Open Source, Heise Zeitschriften
Verlag, 2011, http://heise.de/-1257064

[21] J. Corbet: BPF: the universal in-kernel virtual
machine, In Linux Weekly News, Eklektix Inc., May
2014, https://lwn.net/Articles/599755/

[22] P. McHardy: nftables, August 2008,
http://web.archive.org/web/20081003040938/

people.netfilter.org/kaber/weblog/2008/08/20/

[23] S. McCanne, V. Jacobson: The BSD Packet Filter: A
New Architecture for User-level Packet Capture, In
Proceedings of the USENIX Winter 1993 Conference
(USENIX), pages 259-270, January 1993

[24] J. Corbet: Ktap or BPF?, In Linux Weekly News,
Eklektix Inc., April 2014,
https://lwn.net/Articles/595565/

https://lwn.net/Articles/551284/
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=060212928670593
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=060212928670593
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=5a85e737f30c
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=5a85e737f30c
https://lkml.org/lkml/2013/5/19/20
http://www.ietf.org/rfc/rfc4987.txt
http://heise.de/-1285780
http://tools.ietf.org/html/rfc6298
http://cr.yp.to/syncookies.html
https://bugzilla.redhat.com/1059679
https://lwn.net/Articles/564095/
https://home.regit.org/netfilter-en/nftables-quick-howto/
https://home.regit.org/netfilter-en/nftables-quick-howto/
https://lwn.net/Articles/437981/
http://heise.de/-1257064
https://lwn.net/Articles/599755/
http://web.archive.org/web/20081003040938/people.netfilter.org/kaber/weblog/2008/08/20/
http://web.archive.org/web/20081003040938/people.netfilter.org/kaber/weblog/2008/08/20/
https://lwn.net/Articles/595565/

	Introduction
	Low-latency device polling
	Interrupts vs. Polling
	Low-latency Polling

	Netfilter: SYNPROXY Target
	SYN-Flooding Attacks
	SYN-Cookies
	SYN-Proxies

	Nftables
	Iptables, Ip6tables, Arptables, Ebtables
	Virtual Machine
	New possibilities of Bytecode filtering

	Linux networking trend
	Berkeley Packet Filter VM
	Dynamic Firewall Systems
	Future possibilities

	Conclusion
	References

